搜索结果: 1-9 共查到“计算机图象处理 Mean Shift”相关记录9条 . 查询时间(0.046 秒)
基于小波分析的Mean Shift航拍图像分割算法
航拍图像 图像分割 均值漂移 小波分析
2010/5/5
对于噪声大、分辨率低的航拍图像,提出了利用小波分析多尺度特性,在较粗尺度下对图像进行分割的算法,可有效抑制Mean Shift图像分割算法的过分割问题。分析了Mean Shift算法中核函数窗宽变化对图像分割结果的影响,提出了改进的误分率表示方法,利用新的图像分割性能指标,对几幅实际的航拍图像进行了定量分析,表明了新算法的优点并说明了误分率性能评价指标的有效性。
基于尺度不变特征变换的Mean-Shift目标跟踪
目标区域划分 尺度不变特征变换 均值漂移
2009/11/30
均值漂移(Mean-Shift)目标跟踪算法由于具有快速模板匹配和无参数密度估计等特点,但也存在其固有的缺陷。为了提高该算法的鲁棒性,把目标分成多个区域,对每个区域利用Mean-Shift进行跟踪,迭代次数大于8的放弃迭代。然后利用尺度不变特征变换(SIFT)剔除那些匹配的关键点数目少的子区域。最后,利用匹配关键点数目多的区域得到目标的位置。实验结果表明该方法在目标受遮挡、尺度变化、旋转、环境场景...
基于图像块差分和Mean Shift算法的运动目标检测
视频监控 运动分割 图像块差分
2009/9/18
运动目标检测是计算机视觉中的一个重要研究内容,现有算法中的一个重要问题是噪声对分割结果的影响。提出了一种时空域信息相结合的运动目标检测算法:首先利用图像块的重心位置在时间域上差分结果初始化目标轮廓,图像块差分的方法可以消除噪声的影响及减少目标内部的空洞;然后采用Mean Shift算法对初始轮廓进行迭代,使其逐步贴近真实的目标边缘。实验表明该算法能快速准确地分割出序列图像中的运动目标。
基于多特征Mean Shift的人脸跟踪算法
人脸跟踪 卡尔曼滤波 Mean Shift算法
2009/9/1
该文把局部三值模式(Local Ternary Patterns, LTP)纹理特征引入Mean Shift跟踪算法,提出了基于多特征的Mean Shift人脸跟踪算法以解决Mean shift跟踪算法的鲁棒性问题。通过对LTP纹理特征的分析、研究,提出了一个LTP关键纹理模型,既增强了目标的关键纹理信息,又简化了LTP纹理模型。在此基础上,提出一种基于LTP关键纹理特征和肤色特征的Mean Sh...
基于小波多尺度分解的Mean Shift图像滤波方法
高斯核函数 Fourier级数 Mean Shift迭代
2009/7/16
将小波多尺度分解与传统Mean Shift滤波算法相结合提出的一种有效的图像滤波方法。先将含噪声图像进行Mallat塔式分解,获得不同尺度、不同频带的子图像。将低频近似图像保持不变,对高频细节进行Mean Shift滤波,最后将低频近似图像与高频滤波后的图像进行合成得到去噪后的图像。由于Mean Shift算法是一种迭代方法,要保证较高的数值计算精度则需要较多的迭代次数,耗费较长的计算时间,为克服...
Mean shift 算法在带钢缺陷图像分割中的应用
带钢缺陷 图像识别 Mean shift
2009/5/26
带钢自动表面检测系统中缺陷图像的分割效果对缺陷识别具有重要影响.为了提高缺陷图像的分割效果,提出了采用 Mean shift 算法对带钢缺陷图像中的感兴趣区域进行平滑从而获取缺陷边缘的方法,并将该算法与中值滤波算法进行了比较.测试结果表明,Mean shift 算法能够有效地对缺陷图像中的感兴趣区域进行平滑,并精确得到缺陷目标的边缘,该算法在带钢的缺陷分割中具有较好的性能.
基于模糊隶属关系的Mean Shift图像跟踪改进算法
图像跟踪 Mean Shift 模糊隶属度
2009/4/29
鉴于Mean Shift算法中核心步骤计算所得的新目标模板中心位置几乎都非整数的问题,该文提出了模糊隶属度的概念,并在此基础上,改进了Mean Shift算法在图像跟踪中的实现步骤。实验表明,该算法计算量小,且能很好的减少原算法中不必要的误差。
一种新的基于Mean Shift的目标三自由度跟踪算法
目标跟踪 均值漂移 转角定位
2009/3/26
标准Mean Shift跟踪算法仅能确定目标形心位置,而不能确定其旋转角,在跟踪细长形目标时鲁棒性不好。为此,该文提出了一种三自由度Mean Shift跟踪算法,新算法在计算目标特征分布直方图时,用像素的位置转角及其到目标形心的归一化距离加权,并将像素在局部坐标系下的特征转角作为新特征引入。这种新的目标表示模型能够方便地纳入Mean Shift优化框架,通过迭代求解,可同时精确确定目标的形心位置和...