搜索结果: 1-15 共查到“统计核算理论 regression”相关记录25条 . 查询时间(0.875 秒)
A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression
Blockwise Descent Algorithm Group-penalized Multiresponse Multinomial Regression
2015/8/21
In this paper we purpose a blockwise descent algorithm for grouppenalized multiresponse regression. Using a quasi-newton framework we extend this to group-penalized multinomial regression. We give a p...
Asymptotic normality of a Sobol index estimator in Gaussian process regression framework
Sensitivity analysis Gaussian process regression asymptotic normality stochas-tic simulators Sobol index
2013/6/14
Stochastic simulators such as Monte-Carlo estimators are widely used in science and engineering to study physical systems through their probabilistic representation. Global sensitivity analysis aims t...
Adaptive estimation in nonparametric regression with one-sided errors
adaptive convergence rates non-regular regression frontier estimation bandwidth selection Lepski's method minimax optimality Pickands estimator
2013/6/14
We consider the model of non-regular nonparametric regression where smoothness constraints are imposed on the regression function and the regression errors are assumed to decay with some sharpness lev...
Parallel Gaussian Process Regression with Low-Rank Covariance Matrix Approximations
Parallel Gaussian Process Regression Low-Rank Covariance Matrix Approximations
2013/6/14
Gaussian processes (GP) are Bayesian non-parametric models that are widely used for probabilistic regression. Unfortunately, it cannot scale well with large data nor perform real-time predictions due ...
Adaptive confidence intervals for regression functions under shape constraints
Adaptation confidence interval convex function coverage probability expected length minimax estimation modulus of continuity monotone func-tion nonparametric regression shape constraint white noise model
2013/6/14
Adaptive confidence intervals for regression functions are constructed under shape constraints of monotonicity and convexity. A natural benchmark is established for the minimum expected length of conf...
Variable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis
Coordinate descent counts data overdispersion regularized likelihood sparse group penalty
2013/6/14
With the development of next generation sequencing technology, researchers have now been able to study the microbiome composition using direct sequencing, whose output are bacterial taxa counts for ea...
Variable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis
Coordinate descent counts data overdispersion regularized likelihood sparse group penalty
2013/6/14
With the development of next generation sequencing technology, researchers have now been able to study the microbiome composition using direct sequencing, whose output are bacterial taxa counts for ea...
Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates
Divide and Conquer Kernel Ridge Regression A Distributed Algorithm Minimax Optimal Rates
2013/6/14
We establish optimal convergence rates for a decomposition-based scalable approach to kernel ridge regression. The method is simple to describe: it randomly partitions a dataset of size N into m subse...
Evolution of Covariance Functions for Gaussian Process Regression using Genetic Programming
Gaussian Process Genetic Programming Structure Identification
2013/6/14
In this contribution we describe an approach to evolve composite covariance functions for Gaussian processes using genetic programming. A critical aspect of Gaussian processes and similar kernel-based...
Global risk bounds and adaptation in univariate convex regression
Global risk bounds adaptation univariate convex regression
2013/6/13
We consider the problem of nonparametric estimation of a convex regression function $\phi_0$. We study global risk bounds and adaptation properties of the least squares estimator (LSE) of $\phi_0$. Un...
Comparison of nonhomogeneous regression models for probabilistic wind speed forecasting
Comparison nonhomogeneous regression models probabilistic wind speed forecasting
2013/6/14
In weather forecasting, nonhomogeneous regression is used to statistically postprocess forecast ensembles in order to obtain calibrated predictive distributions. For wind speed forecasts, the regressi...
Quantile Regression for Large-scale Applications
Quantile Regression Large-scale Applications
2013/6/14
Quantile regression is a method to estimate the quantiles of the conditional distribution of a response variable, and as such it permits a much more accurate portrayal of the relationship between the ...
Infinitely imbalanced binomial regression and deformed exponential families
binomial regression extreme value theory imbalanced data Poisson point process q-exponential family
2013/4/28
The logistic regression model is known to converge to a Poisson point process model if the binary response tends to infinitely imbalanced. In this paper, it is shown that this phenomenon is universal ...
On confidence intervals in regression that utilize uncertain prior information about a vector parameter
Frequentist confidence interval Prior information Linear regression
2013/4/28
Consider a linear regression model with n-dimensional response vector, p-dimensional regression parameter beta and independent normally distributed errors. Suppose that the parameter of interest is th...
Distribution and Symmetric Distribution Regression Model for Histogram-Valued Variables
data with variability linear regression Symbolic Data Analysis quantile functions Mallows distance
2013/4/28
Histogram-valued variables are a particular kind of variables studied in Symbolic Data Analysis where to each entity under analysis corresponds a distribution that may be represented by a histogram or...