工学 >>> 力学 >>> 基础力学 >>> 摩擦学 >>>
搜索结果: 16-30 共查到知识要闻 摩擦学相关记录80条 . 查询时间(2.371 秒)
中国科学技术大学徐铜文/杨正金教授团队与合作者针对离子膜普遍存在的“传导性-选择性”相互制约关系,提出一类新型三嗪框架聚合物离子膜。基于刚性通道的限域效应和通道内的“离子配位”机制,这类膜材料展示出了近无摩擦的离子传递,实现了水系有机液流电池快充,电池充放电电流密度达到500 mA/cm2,是当前普遍报道值的5倍以上。2023年4月26日,该成果以“三嗪框架聚合物膜内近无摩擦的离子传导(Near-...
摩擦过程中,界面电荷的转移、累积和释放会直接影响界面的黏附、摩擦及磨损等摩擦学行为。利用摩擦过程中电子转移与传递揭示摩擦磨损本质、监测并调控界面摩擦学行为,已成为摩擦学领域新的热点问题。由于受摩擦副材料的组成与结构性质、界面运动行为、环境等因素的制约,界面摩擦起电的机理与制约因素十分复杂,为摩擦起电机理及摩擦学调控研究带来极大挑战。
2023年3月9日,中国科学院院士、中科院兰州化学物理研究所刘维民研究员和西北工业大学齐卫宏教授在二维材料层间摩擦力的摩尔纹效应研究方面取得新进展。二维材料层间以范德华力结合,这种弱的非键相互作用使得二维材料之间可以任意堆叠而无需晶格匹配,容易形成摩尔纹超结构(图1)。摩尔纹随二维材料层间旋转而变化,且与层间摩擦力密切相关,适当的层间旋转可以形成特定的摩尔纹,使得摩擦力近乎消失(摩擦系数小于0.0...
摩擦研究已深入到电子尺度,并取得了较多成果,尤其是压力诱导超润滑的提出为实现超润滑提供了新策略。然而,固体界面摩擦性能的计算尚未实现自动化和高通量,计算模型构建以及数据后处理仍会浪费科研人员的时间。计算一个界面体系摩擦性能耗费的人工操作时间约60小时,制约了电子尺度摩擦性能的研究。
摩擦研究已深入到电子尺度,并取得了许多瞩目的研究成果,尤其是压力诱导超润滑的提出为实现超润滑提供了一种新策略。但固体界面摩擦性能的计算尚未实现自动化和高通量,计算模型构建以及数据后处理浪费了科研人员大量时间。据估计,计算一个界面体系摩擦性能耗费的人工操作时间约60小时,从而制约了电子尺度摩擦性能的研究。
摩擦研究已深入到电子尺度,并取得了许多瞩目的研究成果,尤其是压力诱导超润滑的提出为实现超润滑提供了一种新策略。但固体界面摩擦性能的计算尚未实现自动化和高通量,计算模型构建以及数据后处理浪费了科研人员大量时间。据估计,计算一个界面体系摩擦性能耗费的人工操作时间约60小时,从而制约了电子尺度摩擦性能的研究。
超润滑是指摩擦系数为0.001量级或更低的超低摩擦状态。超润滑界面的构筑在高端装备、硬盘技术、太空探测、精密制造等领域颇具应用潜力,发展长效稳定的超润滑技术是摩擦学领域的重点与难点。目前对界面的超润滑机理认识尚不清晰,亟需从微观尺度探讨其摩擦物理机制。2023年2月27日,中国科学院兰州化学物理研究所固体润滑国家重点实验室研究员王道爱团队探索了二硒化铌(NbSe2)的微观摩擦学性能,从界面角度阐释...
超润滑是指摩擦系数为0.001量级或更低的超低摩擦状态。超润滑界面的构筑在高端装备、硬盘技术、太空探测、精密制造等领域具有巨大应用潜力,发展长效稳定的超润滑技术一直是摩擦学领域的研究重点与难点。然而,目前对界面的超润滑机理认识仍不够清晰,亟需从微观尺度对其摩擦物理机制进行深入探究。
摩擦磨损是运动机械普遍存在的现象。据统计,摩擦消耗了1/3的一次能源,磨损导致了60%的机械部件失效。构建低摩擦、高稳定、长寿命润滑技术是摩擦科学一直以来努力的方向。“超滑”是2023年来提出的一种能极大突破现有材料润滑性能极限的新概念技术,指摩擦系数(μ)在0.001量级及以下的摩擦状态,摩擦系数和能耗均比传统润滑低1-2个数量级,超滑技术对设备运行可靠性和能耗具有变革性影响。
摩擦纳米发电机(TENG)具有结构简单多样、输出稳定、能量转换效率高的优点,为物联网系统(loT)的持续运行提供了有效的能源供给。以导电水凝胶作为电极材料的水凝胶基摩擦纳米发电机(H-TENG)具有较好的柔性与拉伸性能,在拉伸、弯曲、折叠、按压等复杂状态下仍能正常工作,在柔性可穿戴设备领域和大形变自供能应用中具有独特优势。传统水凝胶普遍存在力学强度差的问题,导致现有的H-TENG面临着容易遭到物理...
具有优异力学性能、快速自修复能力、摩擦起电性甚至特殊光学性质的纳米材料在众多的领域特别是海洋领域如海洋防污、防腐涂层,水下储能、水下封装、柔性传感、智能显示等集成型高科技产业中显示出巨大的应用前景。但由于这些优点通常源自不同的分子机制,因此将它们同时集成到一种合成材料中是一个长期存在的挑战。
超滑(Superlubricity)技术具有超低摩擦系数和近零磨损率等优异特性,能够最大化减少摩擦过程中的能量损耗和材料磨损,成为近年来摩擦学领域的研究热点之一。目前,液体超滑研究主要集中在较低的应用载荷和转速范围,运动形式和摩擦副的选择有限。为了推动液体超滑技术的工程化应用,需要开发新型液体超滑体系,提高其承载能力和运转速度域,拓展接触界面间的运动形式,实现宏观大尺度和苛刻条件下的液体超滑。
刘小明,男,研究员,研究领域1. 跨尺度力学,2. 接触与摩擦力学,3. 极端条件下材料的塑性与破坏,4. 复杂环境下的结构动力学。
摩擦起电是揭示摩擦磨损本质起源具有潜力的研究手段。摩擦起电可作为一种“探针”来反映摩擦副状态与摩擦状况,在智能润滑监测中发挥重要作用。此外,它在能源收集、自驱动传感等领域也展现出广阔应用前景。如何研究摩擦起电与摩擦学行为之间的关系,利用摩擦学原理解决其在能量收集过程中的摩擦磨损问题仍存在挑战。
摩擦起电是揭示摩擦磨损本质起源极具潜力的研究手段。摩擦起电可作为一种“探针”来反映摩擦副状态与摩擦状况,在智能润滑监测中发挥重要作用。同时,它在能源收集、自驱动传感等领域也展现出了广阔的应用前景。如何研究摩擦起电与摩擦学行为之间的关系,利用摩擦学原理解决其在能量收集过程中的摩擦磨损问题仍存在巨大挑战。

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...