理学 >>> 数学 >>> 数理逻辑与数学基础 数论 代数学 代数几何学 几何学 拓扑学 数学分析 非标准分析 函数论 常微分方程 偏微分方程 动力系统 积分方程 泛函分析 计算数学 概率论 数理统计学 应用统计数学 运筹学 组合数学 离散数学 模糊数学 应用数学 数学其他学科
搜索结果: 1-8 共查到数学 the Boros-Moll polynomials相关记录8条 . 查询时间(0.067 秒)
We prove two conjectures of Brändén on the real-rootedness of polynomials Qn(x) and Rn(x) which are related to the Boros-Moll polynomials Pn(x). In fact, we show that both Qn(x) and Rn(x) form St...
The Boros-Moll polynomials Pm(a) arise in the evaluation of a quartic integral. It has been conjectured by Boros and Moll that these polynomials are infinitely log-concave. In this paper, we show that...
We find a combinatorial setting for the coefficients of the Boros-Moll polynomials Pm(a) in terms of partially 2-colored permutations. Using this model, we give a combinatorial proof of a recurrence r...
We prove two conjectures of Br\"{a}nd\'{e}n on the real-rootedness of polynomials $Q_n(x)$ and $R_n(x)$ which are related to the Boros-Moll polynomials $P_n(x)$. In fact, we show that both $Q_n(x)$ an...
We introduce the notion of interlacing log-concavity of a polynomial sequence {Pm(x)}m≥0, where Pm(x) is a polynomial of degree m with positive coefficients. This sequence is said to be interlacingly ...
The Boros-Moll polynomials arise in the evaluation of a quartic integral. The original double summation formula does not imply the fact that the coefficients of these polynomials are positive. Boros a...
We prove the reverse ultra log-concavity of the Boros-Moll polynomials. We further establish an inequality which implies the log-concavity of the sequence {i!di(m)} for any m ≥ 2, where di(m) are the ...
In their study of a quartic integral, Boros and Moll discovered a special class of Jacobi polynomials, which we call the Boros-Moll polynomials. Kauers and Paule proved the conjecture of Moll that the...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...