工学 >>> 电子科学与技术 >>> 电子技术 光电子学与激光技术 半导体技术 电子科学与技术其他学科
搜索结果: 1-6 共查到电子科学与技术 神经形态器件相关记录6条 . 查询时间(0.154 秒)
生物启发脉冲神经网络架构有望通过模拟人脑的高算力、高并行度、低功耗等特性,解决冯·诺依曼架构存储墙和能效瓶颈等问题。然而,面向构建脉冲神经网络的神经形态硬件的研究尚处于探索阶段,基于传统CMOS的神经形态芯片通常需要数十个晶体管和若干电容;基于新型存储器等新原理神经器件亦需集成额外电容或复位操作电路,且耐久性受限,难以满足高频神经器件的信息整合处理需求。自旋电子器件具有高能效、高耐久性及更丰富...
生物启发脉冲神经网络架构有望通过模拟人脑的高算力、高并行度、低功耗等特性,解决冯·诺依曼架构存储墙和能效瓶颈等问题。然而,面向构建脉冲神经网络的神经形态硬件的研究尚处于探索阶段,基于传统CMOS的神经形态芯片通常需要数十个晶体管和若干电容;基于新型存储器等新原理神经器件亦需集成额外电容或复位操作电路,且耐久性受限,难以满足高频神经器件的信息整合处理需求。自旋电子器件具有高能效、高耐久性及更丰富...
生物启发脉冲神经网络架构有望通过模拟人脑的高算力、高并行度、低功耗等特性,解决冯·诺依曼架构存储墙和能效瓶颈等问题。但面向构建脉冲神经网络的神经形态硬件的研究尚处于探索阶段,基于传统CMOS的神经形态芯片通常需要数十个晶体管和若干电容;基于新型存储器等新原理神经器件亦需集成额外电容或复位操作电路,且耐久性受限,难以满足高频神经器件的信息整合处理需求。自旋电子器件具有高能效、高耐久性及更丰富的物...
当前,人工智能已然成为时代的主题与历史的必然。以冯·诺依曼架构为基础的信息处理方式在海量数据面前遭遇了极大的挑战。类脑计算由于其具备高并行、低功耗以及高容错等诸多优点成为当前研究的焦点。在核心器件层次,发现与理解电荷输运新机制是构筑优异性能器件的基础,有助于准确模拟神经突触与神经元的系列行为。
近日,复旦大学微电子学院教授周鹏课题组与河北大学教授闫小兵课题组开展合作研究,利用自组装的PbS量子点获得了阈值电压低、开关电压分布均匀、保持性强、响应时间快和功耗低等具有优异性能的器件。该器件成功模拟了生物突触的学习和计算功能,器件制备方法简单,提供了一种改善忆阻器件性能的新思路,为器件小型化发展开发了一种新途径,为未来人工智能、数据识别、神经仿生、逻辑电路等领域提供了器件基础。12月28日,相...
近日,复旦大学微电子学院教授周鹏课题组和南京大学电子科学与工程学院教授王欣然课题组合作,利用无机二维层状MoS2以及有机二维层状PTCDA薄膜构建有机-无机二维杂化异质结体系,首次在世界上实现了基于全二维材料的、有机无机杂化、光电双调制、超高性能和时间鲁棒性的人造突触单元,为硬件实现神经形态网络、类脑计算和相关技术领域的应用开辟了一条全新的道路。相关成果以《具有高效光电双调制和多功能性的MoS2/...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...